Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(14): 10196-10205, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38526994

RESUMO

Although numerous polymer-based composites exhibit excellent dielectric permittivity, their dielectric performance in various applications is severely hampered by high dielectric loss induced by interfacial space charging and a leakage current. Herein, we demonstrate that embedding molten salt etched MXene into a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE))/poly(methyl methacrylate) (PMMA) hybrid matrix induces strong interfacial interactions, forming a close-packed inner polymer layer and leading to significantly suppressed dielectric loss and markedly increased dielectric permittivity over a broad frequency range. The intensive molecular interaction caused by the dense electronegative functional terminations (-O and -Cl) in MXene results in restricted polymer chain movement and dense molecular arrangement, which reduce the transportation of the mobile charge carriers. Consequently, compared to the neat polymer, the dielectric constant of the composite with 2.8 wt % MXene filler increases from ∼52 to ∼180 and the dielectric loss remains at the same value (∼0.06) at 1 kHz. We demonstrate that the dielectric loss suppression is largely due to the formation of close-packed interfaces between the MXene and the polymer matrix.

2.
Nat Commun ; 14(1): 7891, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036500

RESUMO

Layered thio- and seleno-phosphate ferroelectrics, such as CuInP2S6, are promising building blocks for next-generation nonvolatile memory devices. However, because of the low Curie point, the CuInP2S6-based memory devices suffer from poor thermal stability (<42 °C). Here, exploiting the electric field-driven phase transition in the rarely studied antiferroelectric CuCrP2S6 crystals, we develop a nonvolatile memristor showing a sizable resistive-switching ratio of ~ 1000, high switching endurance up to 20,000 cycles, low cycle-to-cycle variation, and robust thermal stability up to 120 °C. The resistive switching is attributed to the ferroelectric polarization-modulated thermal emission accompanied by the Fowler-Nordheim tunneling across the interfaces. First-principles calculations reveal that the good device performances are associated with the exceptionally strong ferroelectric polarization in CuCrP2S6 crystal. Furthermore, the typical biological synaptic learning rules, such as long-term potentiation/depression and spike amplitude/spike time-dependent plasticity, are also demonstrated. The results highlight the great application potential of van der Waals antiferroelectrics in high-performance synaptic devices for neuromorphic computing.

3.
Angew Chem Int Ed Engl ; 62(9): e202211461, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36156351

RESUMO

Currently, less favorable C=O hydrogenation and weak concerted acid catalysis cause unsatisfactory catalytic performance in the upgrading of biomass-derived furfurals (i.e., furfural, 5-methyl furfural, and 5-hydroxymethyl furfural) to ketones (i.e., cyclopentanone, 2,5-hexanedione, and 1-hydroxyl-2,5-hexanedione). A series of partially oxidized MAX phase (i.e., Ti3 AlC2 , Ti2 AlC, Ti3 SiC2 ) supporting Pd catalysts were fabricated, which showed high catalytic activity; Pd/Ti3 AlC2 in particular displayed high performance for conversion of furfurals into targeted ketones. Detailed studies of the catalytic mechanism confirm that in situ hydrogen spillover generates Frustrated Lewis H+ -H- pairs, which not only act as the hydrogenation sites for selective C=O hydrogenation but also provide acid sites for ring opening. The close intimate hydrogenation and acid sites promote bifunctional catalytic reactions, substantially reducing the reported minimum reaction temperature of various furfurals by at least 30-60 °C.

4.
ACS Appl Mater Interfaces ; 14(40): 45254-45262, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36166239

RESUMO

Aluminum-ion batteries have garnered significant interest as a potentially safer and cheaper replacement for conventional lithium-ion batteries, offering a shorter charging time and denser storage capacity. Nonetheless, the progress in this field is considerably hampered by the limited availability of suitable cathode materials that can sustain the reversible intercalation of Al3+/[AlCl4]- ions, particularly after long cycles. Herein, we demonstrate that rechargeable Al batteries embedded with two-dimensional (2D) Nb2CTx MXene as a cathode material exhibit excellent capacity and exceptional long cyclic performance. We have successfully improved the initial electrochemical performance of Nb2CTx MXene after being properly delaminated to a single-layered microstructure and subjected to a post-synthesis calcining treatment. Compared to pristine Nb2CTx MXene, the Al battery embedded with the calcined Nb2CTx MXene cathode has, respectively, retained high capacities of 108 and 80 mAh g-1 after 500 cycles at current densities of 0.2 and 0.5 A g-1 in a wide voltage window (0.1-2.4 V). Noteworthily, the cyclic lifetime of Nb2CTx MXene was extended from ∼300 to >500 times after calcination. We reveal that attaining Nb2CTx nanosheets with a controllable d-spacing has promoted the migration of the [AlCl4]- and Al3+ ions in the MXene interlayers, leading to enhanced charge storage. Furthermore, we found out that the formation of niobium oxides and amorphous carbon after calcination probably benefits the electrochemical performance of Nb2CTx MXene electrode in Al batteries.

5.
ACS Appl Mater Interfaces ; 11(30): 27358-27362, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31305992

RESUMO

We report a strong effect of the MXene flake size and surface termination on the dielectric permittivity of MXene polymer composites. Specifically, poly(vinylidene fluoride-trifluoro-ethylene-chlorofluoroehylene) or P(VDF-TrFE-CFE) polymer embedded with large (ca. 4.5 µm) Ti3C2Tx flakes achieves a dielectric permittivity as high as 105 near the percolation limit of 15.3 wt % MXene loading. In comparison, the dielectric permittivity of MXene/P(VDF-TrFE-CFE) using small (ca. 1.5 µm) Ti3C2Tx flakes (S-MXene) achieves a dielectric permittivity of 104 near the percolation limit of 16.8 wt %. Meanwhile, increasing the concentration of surface functional groups on the MXene surface (-O, -F, and -OH) by extending the etching time gives a dielectric constant of 2204 near the percolation limit of 15.7 wt %. The ratio of permittivity to the loss factor of our large flake composite is superior to that of the small flake composite, and to all previously reported carbon-based fillers in P(VDF-TrFE-CFE). We show that the dielectric permittivity enhancement is strongly related to the charge accumulation at the surfaces between the two dimensional (2D) MXene flakes and the polymer matrix under an external applied electric field.

6.
Adv Mater ; 31(14): e1806860, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30762903

RESUMO

This study demonstrates the first synthesis of MXene-derived ferroelectric crystals. Specifically, high-aspect-ratio potassium niobate (KNbO3 ) ferroelectric crystals is successfully synthesized using 2D Nb2 C, MXene, and potassium hydroxide (KOH) as the niobium and potassium source, respectively. Material analysis confirms that a KNbO3 orthorhombic phase with Amm2 symmetry is obtained. Additionally, ferroelectricity in KNbO3 is confirmed using standard ferroelectric, dielectric, and piezoresponse force microscopy measurements. The KNbO3 crystals exhibit a saturated polarization of ≈21 µC cm-2 , a remnant polarization of ≈17 µC cm-2 , and a coercive field of ≈50 kV cm-1 . This discovery illustrates that the 2D nature of MXenes can be exploited to grow ferroelectric crystals.

7.
ACS Nano ; 12(4): 3369-3377, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29624367

RESUMO

We demonstrate that poly(vinylidene fluoride) (PVDF)-based percolative composites using two-dimensional (2D) MXene nanosheets as fillers exhibit significantly enhanced dielectric permittivity. The poly(vinylidene fluoride-trifluoro-ethylene-chlorofluoroehylene) (P[VDF-TrFE-CFE]) polymer embedded with 2D Ti3C2T x nanosheets reaches a dielectric permittivity as high as 105 near the percolation limit of about 15.0 wt % MXene loading, which surpasses all previously reported composites made of carbon-based fillers in the same polymer. With up to 10 wt % MXene loading, the dielectric loss of the MXene/P(VDF-TrFE-CFE) composite indicates only an approximately 5-fold increase (from 0.06 to 0.35), while the dielectric constant increased by 25 times over the same composition range. Furthermore, the ratio of permittivity to loss factor of the MXene-polymer composite is superior to that of all previously reported fillers in this same polymer. The dielectric constant enhancement effect is demonstrated to exist in other polymers as well when loaded with MXene. We show that the dielectric constant enhancement is largely due to the charge accumulation caused by the formation of microscopic dipoles at the surfaces between the MXene sheets and the polymer matrix under an external applied electric field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...